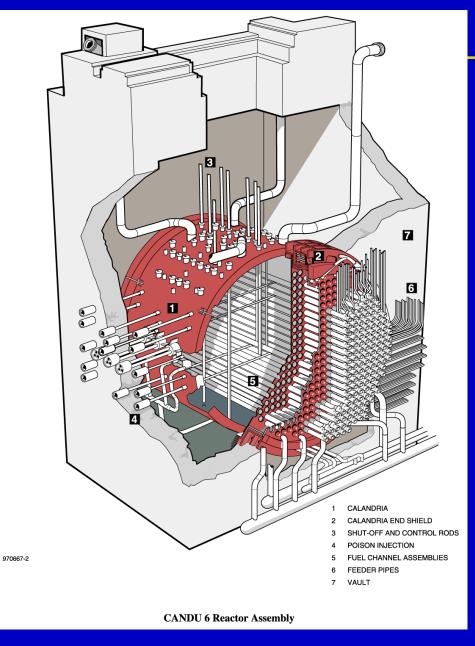


CANDU Safety #5 - Safety Functions - Shutdown Systems

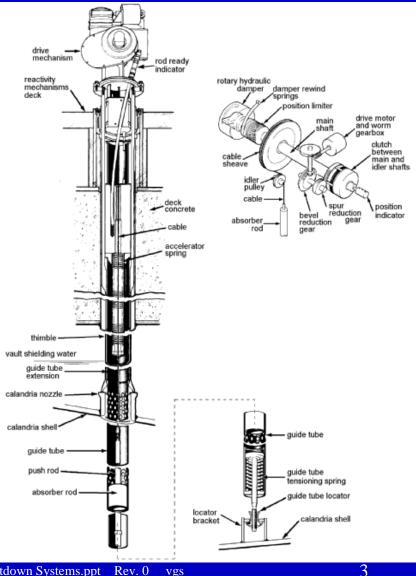
Dr. V.G. Snell Director Safety & Licensing


24/05/01

CANDU Safety - #4 - Safety Functions - Shutdown Systems.ppt Rev. 0 vgs

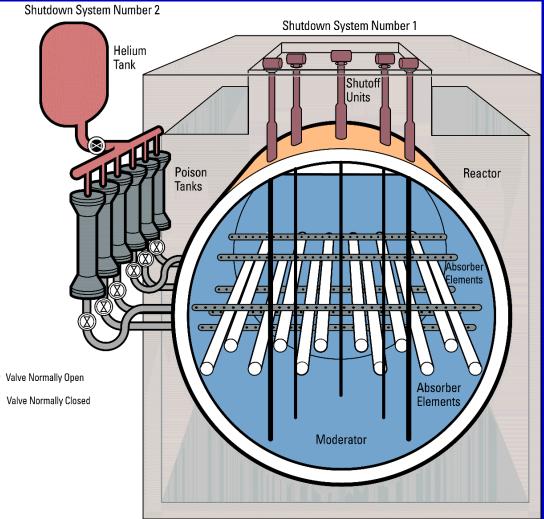
1

Location of Shutdown Systems Relative to the Reactor and Reactivity Mechanisms



24/05/01

Shutdown System 1


- 28 spring-assisted gravity-drop absorber elements
- **λ** poised above core
- λ supported by cable
- held against spring by clutch; loss of power to clutch causes rods to fall into moderator
- λ guide tubes guide the absorbers as they fall in
- **λ** full insertion in < 2 seconds

Shutdown System #2

- 6 perforated nozzles run horizontally across the moderator
- λ each nozzle is connected to a liquid tank full of GdNO₃
- a high-pressure helium tank forces the "poison" into the moderator in < 2 sec.

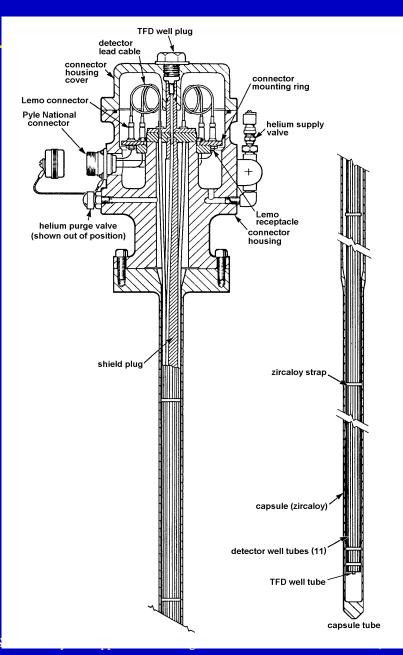
24/05/01

Ø

(🖂)

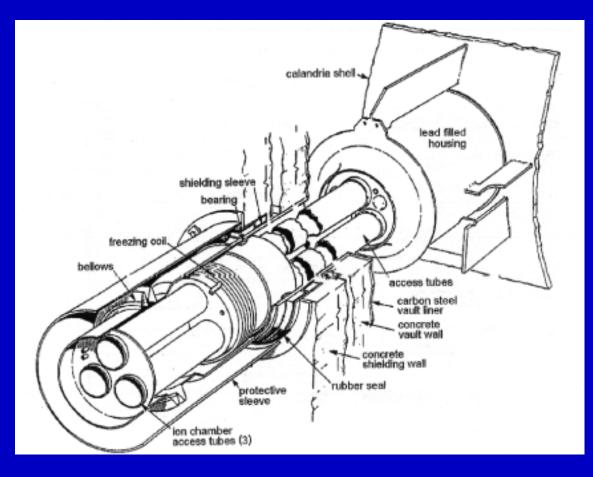
Performance Requirements

- **λ** insertion speed and initial negative reactivity
 - set by the large LOCA
 - turn over the power increase before the fuel or sheath melts
 - significant negative reactivity within 0.6 seconds of trip
- **λ** reactivity depth
 - set by a fuel channel rupture (in-core break) on startup after a long shutdown
 - moderator contains boron / gadolinium and after rupture is displaced by "unpoisoned" coolant
 - some shutoff rod guide tubes may be damaged


Reactivity Balance for In-Core Break

Reactivity Change Due to:	Reactivity (mk) at 15 minutes
Moderator poison displacement	10.5
Coolant void	13.3
Coolant Temperature	0.3
Fuel Temperature	4.1
Downgrading Moderator Purity	-4.8
Moderator Temperature	-0.1
Total to be compensated by shutdown	23.3

Flux Detectors

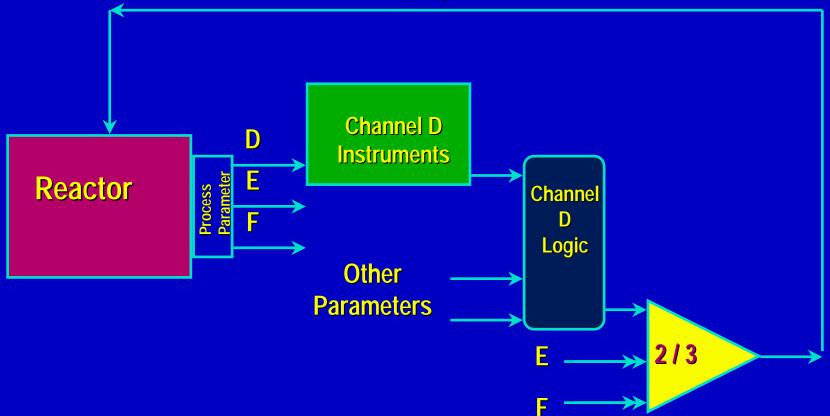

- SDS1 uses vertical self-powered fast-response platinum flux detectors in core
- λ they are not shared with the control system nor with SDS2
- λ they are used for local overpower protection and for bulk overpower
- λ SDS2 uses separate horizontal incore detectors

Ion Chambers

- SDS1 and SDS2 use (separate) ion chambers on the side of the core
- the main purpose is to generate a low-level power signal and a highrate signal

Typical SDS1 Trip Parameters

Parameter	Purpose - examples
High Neutron Power	Loss of reactivity control, LOCA
High Rate of Rise of Neutron Power High Coolant Pressure	LOCA, loss of reactivity control from low power Loss of flow, loss of heat sink
Low Coolant Pressure	Small LOCA
High Building Pressure	LOCA, steam line break
Low Steam Generator Level	Steam and feedwater line breaks
Low Pressurizer Level	Small LOCA
High Moderator Temperature	Loss of service water
Low Coolant Flow	Loss of flow
Low Steam Generator Pressure	Steam line break


Typical SDS2 Trip Parameters

Parameter	Purpose - examples
High Neutron Power	Loss of reactivity control, LOCA
High Rate of Rise of Neutron Power High Coolant Pressure	LOCA, loss of reactivity control from low power Loss of flow, loss of heat sink
Low Coolant Pressure	Small LOCA
High Building Pressure	LOCA, steam line break
Low Steam Generator Level	Steam and feedwater line breaks
Low Pressurizer Level	Small LOCA
<mark>Low Header Др</mark>	Loss of flow
Low Steam Generator Pressure	Steam line break

SDS1 Two- Out-of-Three Logic

Reactor Trip Signal

2 out of 3 Logic

- λ allows one channel to be tested without tripping the reactor
- allows one channel, if it is known to be faulty, to be put in a safe (tripped) state without tripping the reactor
- > permits comparison of the three signals and alerts the operator if any seem inconsistent

Shutdown System Design Requirements

- **λ** each shutdown system is effective for all accidents
- they do not share sensing, logic or actuation devices with each other or with the reactor control system
- λ the design of the two shutdown systems is diverse
 - solid absorber rods and liquid poison injection
 - logic microprocessors programmed by different groups of people in different languages
- k where practical, each shutdown system has two diverse trip parameters which are effective for each accident
- λ in a few cases SDS1 and SDS2 trips are diverse
 - e.g., low flow and low Δp

Shutdown System Design Requirements - More

- λ the two shutdown systems are oriented differently
 - vertical rods and horizontal nozzles, also for flux detectors
- **λ** the cables and instrumentation are physically separated
- **λ** each SDS is controlled from a different control room
- λ each SDS is designed to meet an unavailability of 1 in 1000
- ach SDS is tested during operation to show that this unavailability is met:
 - each channel is testable up to the final 2 / 3 logic
 - any shutoff rod can be partially dropped
 - any poison valve can be opened without firing SDS2

Shutdown System Design Requirements - More

- nost process parameters are directly testable: e.g., a shutter can be moved in an ion chamber to test the log rate trip for that channel
- λ the systems are fail safe as far as possible:
 - loss of power to clutches or poison valves trips the system
 - loss of power to a channel trips the channel
 - loss of power supply trips the channel
 - watchdog timers trip the channel if the logic is not routinely operating
- the operator cannot easily prevent tripping the systems nor change the logic

Lesson Learned from Chernobyl

- the shutdown systems in Chernobyl were adequate according to the safety analysis
- the designers assumed the operator would not operate the plant in an unusual configuration
- λ he did, and the shutdown systems made the accident worse
- λ in CANDU:
 - the reactor state does not change much once equilibrium fuelling is reached
 - the shutdown system effectiveness does not depend much on reactor state

Summary

- **λ** CANDU Shutdown Systems are:
 - effective, acting alone; therefore they are fully redundant
 - diverse in design
 - designed to numerical reliability target
 - testable during operation to show the reliability target is met
 - separated so that a hazard in a local area will not affect both systems